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Abstract

Most automated and semi-automated construction tasks require real-time information about the local workspace in the
form of 3D geometric models so that on-site decisions can be made quickly and safely. This paper describes and
demonstrates a new rapid, local area, geometric data extraction and 3D visualization method for unstructured construction
workspaces that combines human perception, simple sensors, and descriptive CAD models. This paper also presents
algorithms to fit objects to sparse point clouds of measured data in a construction scene, that significantly decrease data

acquisition time, and computational and modeling time.
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1. Introduction

Laser range scanner has been widely used to obtain 3D
range data for construction site scenes. The uses of laser
range scanners in the construction industry include: (1)
generating 3D as-built model, (2) tracking terrain changes
due to excavation, (3) site inspection, (4) aerial surveying,
and (5) process simulation and operator training.

Using automated or semi-automated equipment on a large
construction site requires rapid recognition and accurate
measurement of objects in the workspace so that timely on-
site decisions can be made.

Rapid local model related research such as the Autonomous
Loading System (ALS) was conducted at the Robotics
Institute at Carnegie Mellon University (Stentz et al. 1998).
This system uses two laser range scanners whose purpose is
to recognize and localize the truck, detect obstacles, and
measure the soil face. One of the disadvantages in ALS is
that whenever a new truck arrives for loading, the ALS
must repeat the computing process of matching model-to-
scene. This results in decreased efficiency because the most
important issue of ALS is to ascertain object location, not to
recognize the object.

In previous attempts to solve the problem of rapid
recognition and accurate measurement of objects in the

workspace, most researchers have focused on building
comprehensive 3D models of the workspace derived from a
combination of design data and from highly computationally
intensive interpretation of dense clouds which have hundreds
of thousands points at a scene and position data (Bary et al.
1997, Stentz et al. 1998, and Witzgall er al. 2001). Low
accuracy in extracting objects from dense clouds is an
additional limitation of full range scanning methods. Recent
research indicates that graphic workspace modeling and
graphical equipment control technologies can in fact improve
equipment control significantly in several construction
automation applications such as heavy lifting, earth moving,
material handling, and infrastructure repair and maintenance
(Haas 1995). However, comprehensive local area modeling
based on fusion of dense point clouds is impractical and
unnecessary in practice in the near future (Cho 2002).

By strategically incorporating human assistance, which
can simplify and accelerate geometrical data acquisition of
real-world objects considerably, the ability to extract models
of real world objects in a construction workspace for
equipment operations from only a limited number of scanned
points is a significant advantage of this approach over full
range scanning methods that require computationally
intensive range data processing.

This paper presents a new method for rapid geometric
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modeling and visualization of a local areas based on spatial
information about objects obtained using simple sensors
(such as a single-axis laser rangefinder and a video camera)
for better planning and control of automated construction
equipment operations in unstructured workspaces.

2. Rapid Modeling Methods

In this research, current approaches to workspace
modeling include: (1) human assisted selected-points based
local area sensing and (2) analysis of sparse range point
clouds, using such methods of least-square-fits to planar
and curved surfaces. The results of their applications are
presented in the following sections.

2.1. Human Assisted Selected-Points Based Local
Area Sensing

Since most target objects are known and man-made, they
can be described as a generic set of parametrically defined
graphical objects in a computer database (Cho 2002). Such
a library of pre-stored models (related to facility design
elements), with manual guidance, can provide graphic
representations of forms that can be matched and fitted to
sensed data from 3D position sensors deployed in the work
environment. The matching and fitting process is equivalent
to setting the values of the object parameters that define it.

2.1.1. Boundary Representation of Objects

Faces, edges and vertices are the basic geometric elements
required for a boundary representation of a solid object. As
long as the Cartesian coordinates of a certain number of
vertices, or points on the edges or on the faces of the object,
are identified, position and orientation of most solid objects
can be determined. The number of vertices or points on the
edge or a surface depends on the geometric and topological
features of the solid object.

Primitives that could be used to represent or construct
typical construction material such as pipes and I-beams
were examined. A single-axis laser range finder was used to
obtain the minimum required points with regard to an objects
position and orientation. Given the lack of precise control
of the measuring device and hand-eye coordination of a
typical operator, acquiring these points is sometimes difficult
to implement in practice. Practical means to deal with this
issue are partially addressed by this research but are more
fully addressed in subsequent follow-up research (analysis
of sparse range point clouds).

(1) Box (Cuboid)
A box can be used for fitting and matching structural
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Fig. 1. Vertices Measuring for a Box Modeling
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Fig. 2. Vertices Measuring for a Prism Modeling

objects such as columns, box-beams and walls and finishing
objects. A box which has been unambiguously identified
can be easily located with respect to its position and location
as long as the positions of three vertices can be measured
(Fig. 1). If the box is ambiguous and parametrically defined,
a fourth point is required to determine its depth.

(2) Prism

Three vertices are required to locate a prism. However,
sometimes three points may induce a directional confusion
in the boundary for the operator. An additional point can
prevent this problem (Fig. 2).

(3) Cylinder

Cylinders can be used to fit and match chemical pipes,
ventilation pipes, and concrete piles. Although the operator
can see the vertices on silhouette edges that indicate the
diameter of the cylinder, in practice, a laser can not measure
the outer most points on the round edge because it reflects
the footprint of the laser. In addition, the footprint of the
laser becomes highly diffused because of the low angle of
incidence at which it illuminates the cylinder edge. Thus,
unlike a box or a prism, a cylinder requires more than three
points. Based on the fact that there is only one circle that
passes through three points, the triangle created by the three
points determines the size and position of the circular face
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Fig. 3. Edge Measuring for a Cylinder Modeling
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Fig. 4. A Pipe Connector Modeling Process

of the cylinder A fourth point on the other edge of the
cylinder will determine the direction and length of the
cylinder, as shown in Fig. 3.

(4) Pipe Connector

The pipe connector was formed by three cylinders (two
9” and one 8" cylinders) and a quadrant of a torus. As long
as two circles are defined with six points on the boundary
edge, a pre-designed pipe connector can be easily located
(Fig. 4).

2.1.2. Trench Modeling

A small trench was created at the laboratory’s outdoor
facilities, and the laser/camera system was used to obtain
geometric data for the trench, a pipe connection of two
aluminum pipes and a pipe connector based on the afore-
mentioned well-known geometry laws. The range of
measurement of the laser range finder is 100 m with
accuracy of +£3 mm. The step size of the tele-operated pan
and tilt unit, which controls the laser range finder, is of high
resolution (0.0128571°/step) and its maximum speed is a
little over 60°/second.

The purpose of this graphical modeling experiment for a
trench site was to demonstrate the potential of this method
to keep people out of a trench, to provide a safety boundary
representation of a trench with a form of non-parametric

Vol. 7, No. 3/ May 2003

model, and to provide the operator with precise spatial
information that can potentially improve equipment control
for high precision pipe placing and connecting tasks in a
trench.

Especially, the safety boundary representation of the
trench can eliminate interference between the equipment
and the trench walls during operation. Thus, instead of
describing the detailed topography of the trench, seven points
located slightly inside its walls were measured to represent
this safety boundary (Fig. 5).

Like the pipe connector, six points were measured to

Safety Boundary ‘a\‘
- 1 4

Y

Fig. 5. Safety Boundary Measurement for a Trench

Fig. 6. lllustration of Measuring Position of Assembled Pipes
with a Laser Range Finder

Fig. 7. Completed Model of Pipes in a Trench
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identify the position and orientation of the assembled pipes
(Fig. 6). Then, pre-designed assembled pipes were imported
to the scene for the fitting and matching process based on
the measured surface data. Fig. 7 shows the completed as-
built design of pipes in the trench.

2.2. Analysis of Sparse Range Point Clouds

This section presents algorithms that accurately fit and
match objects, with regard to location and orientation, to
sparse point clouds in a construction scene.

The single-axis laser range finder was also used to get the
sparse point clouds from objects. The modeling process
involves the following functions:

1. Select object for scanning (by operator)

Acquire sparse point cloud data in the form of range

images

Convert range data into xyz coordinates

Analyze the features of each surface of the object

Match all of the object surfaces with the model’s

surfaces using matching algorithms

6. Fit the object into the point cloud using fitting
algorithm

[S]

vk W

The following fitting and matching algorithms were
developed for each primitive:

1. Cuboid algorithm
2. Cylindrical object algorithm

Since cuboid and cylindrical shapes of primitives consist
of 6 planar surfaces (cuboid), and two planar surfaces and
one curved surface (cylinder), the algorithms were developed
as a surface based fitting and matching method. Algorithm
development and revisions were based on lab experiments.

2.2.1. Cuboid Algorithm

This section describes how to fit a sparse points cloud to a
cuboids surfaces using the k-nearest neighbors and the least
squares methods.

2.2.1.1. Point Segmentation Using K-Nearest Neighbors
Method

To find the nearest points for all measured points on a
cuboid, a k-nearest neighbor algorithm was used. The
algorithm finds the nearest two points by computing all the
distances from a scanned point to all other points (Duda et al.
2001). After determining two nearest neighbors for each
scanned point, a group of three-point sets was found. Then,
a normal vector for each three-point set was computed. By
analyzing normal vectors, the scanned points were seg-
mented by each cuboid surface.

Fig. 8. Surface Optimization

2.2.1.2. Plane Optimization Using the Least Squares
Fitting Method

The least squares method (Duran er al. 1973) was used
for the best-planar fit of point sets on each surface of the
cuboid after segmentation was applied.

Since in a planar regression, Y is to be regressed on two
independent variables X and Z, a relationship, where both X
and Z, are calculated as deviations from their means, was
used:

E(Y)=o+f-Xi+y-Z, ()

For any given combination of X; and Z; the expected yield
E(Yi) is a point directly above the plane, shown as a hollow
dot in Fig. 8. The actual value of the component Yi of an
observed point is somewhat greater than its expected value
and is shown as a solid dot lying on the plane. The
difference between the observed and expected values of Y,
is shown by the error term ¢; and thus the observed value Y,
is expressed as its expected value plus the error term ¢;:

Yi=oa+B-Xi+yZ—e; (2)

While moving along the x-direction, f3; is interpreted as the
slope of the plane. In the same way ¥is the subsidiary effect
of z. To minimize the error sum of the squares a coefficient
is used:

(5}

(3)

>

N n, N .
Z(Y,,—Y)'=2(Y,-—&+ <X+
i=1

i=1

Taking the partial derivatives of the above expression with
respect to o, ﬁ and ¥, and setting them to zero, finally
alpha, beta, gamma are found. Using this expression, the
three optimized surfaces of the cuboid are computed (Fig.
8). After segmenting all scanned points by the three surfaces
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of the cuboid, the points were projected onto the optimized
surface to compute dimensions.

2.2.1.3. Determining Intersecting Edges and Computing
Dimensions

The three surface planes of the cuboid, from which range
data were received, intersect at a point, and each two planes
intersect at a line. The intersection of the two planes of the
cuboid was found by solving the two linear equations
representing the planes. After applying this for all three
surfaces of the cuboid, the three edges of the cuboid were
determined and matched. A vertex of the cuboid was also
determined. Figs. 9 and 10 show the results of point
segmentation, and matching vertex process.

Once the three edges of the cuboid were defined, the
dimensions of the cuboid were determined as follows: By
computing the distances of all measured points on each
surface to each one of the already defined edges of the same
surface, the furthest point from each edge was found. The
distances of the furthest points on the surfaces from the
three intersecting edges represent the dimensions of the
cuboid.

Fig. 11 shows a fitted and matched model of an object

Fig. 9. Matching Points and Segmentation

Fig. 11. Fitted and Matched Cuboid

after the application of the cuboid algorithm.

2.2.2. Cylindrical Object Algorithm

Four parameters are required for fitting and matching a
solid cylinder: a scalar radius r; an axis vector, a; a center
point to determine the axis vector, c=(X,, Y., Z,) and a set
of scanned points g={(X;, ¥;, Z;)} to find out the boundary
of the cylinder. To determine the normal vector, the “k-
nearest neighbors method” was used. Then, by analyzing
normals, the scanned points were segmented by surface
(planar or curved). Subsequently, by projecting all points on
the curved surface onto the planar surface, parameters » and
¢ were estimated. The least squares method was also used
to optimize the curved surface. The radius of the cylinder
was found as the distance from the center of the circle to
any point on the optimized curve. Projected points on the
planar surface are considered end points of different chords
in the circle and used to estimate its center ¢. An initial
estimate of the radius, 7, is found by 7 = mean(|¢ k') (K’
={the points on the optimized curve of planar surface}).

Fig. 10. Three Edges of a Cuboid and its Centroid
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Fig. 12. Fitted and Matched Cylinder
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Table 1. Test Results of the Cuboid Algorithm

Object 4

Angular
deviation
between edges

Object 1 15 30 5.87 35.87
Object 2 20 50 5.66 55.66
Object 3 25 60 6.48 66.48
Object 4 30 80 5.6 85.6

Then the final values of a, ¢, and r are found by applying the
least squares method to all scanned data (Fig. 12).

2.2.3. Experimental Results of Sparse Range Point
Clouds Method

Table 1 shows an example of experimental results of a
cuboid fitting and matching process. The test results of the
algorithms present approximately less than 1-degree angular
deviation between model and real objects” axis. Respectively
in all tests the size difference between the modeled and the
actual objects surfaces is less than 5%. For increased
accuracy further modifications of the algorithms are required.
In general low deviation values, and the low modeling
times in Table 1 indicate that a system based on the above
geometric algorithms and a human-guided simple laser range
finder can model construction objects rapidly and with
sufficient accuracy.

3. Conclusions

A new rapid local area workspace modeling method has
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been developed by combining human perception, pre-stored
CAD objects, and use of simple sensors such as single-axis
laser rangefinders and remote video cameras. Two
approaches were conducted: (1) human assisted selected-
points based local area sensing and (2) analysis of sparse
range point clouds, using such methods of least-square-fits
to planar and curved surfaces.

The fitting and matching algorithms discussed in this
paper, are an integral part of a method that involves several
other functions such as: human object recognition, collecting
of range information, grouping of scanned points, and
computing dimensions to final fitting and matching. A basic
feature of the method is that it takes advantage of human
cognitive ability to recognize and classify objects in the
workspace; that is a human operator initiates scanning,
recognizes objects, and controls the system for data
acquisition. In addition fitted and matched objects are
verified by the operator and then inserted into the workspace
model.

The rapid geometry modeling method can significantly
reduce modeling time while potentially increasing modeling
accuracy in terms of volume, position, and orientation.
Potential impact of this research includes safer and more
efficient operations with computer-assisted construction and
maintenance equipment.
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